Weed Out Unreliable Automotive PCB Manufacturers with these 5 Clever Tricks

As we continue to evolve our automobile technology, we need reliable printed circuit boards to do the dirty work of processing all our demands. Our vehicles nowadays are becoming reliant on technological processes that involve printed circuit boards (PCB). The electronic automotive industry is growing at an incredible speed, with profits now reaching into the billions every year.

Continue reading “Weed Out Unreliable Automotive PCB Manufacturers with these 5 Clever Tricks”

UV Laser Depaneling: Taking the Hazards Out of HAZ

How will the heat generated by a laser beam affect my board and components during depaneling? Will it melt edge components into an ugly heap? Or demolish thin flex materials into an unrecognizable blob? We get these worst case scenario questions all the time from PCB designers and manufacturers who have relied on mechanical routers, manual cutters, and other traditional depaneling machines throughout their careers. So it is no wonder that there’s an ongoing concern about a laser’s heat affective zone (HAZ), and the thermal effect on edge components in particular.

Read More

The Good Gets Even Better: Flex PCB Laser Etching

Flexibility is a good thing if you’re an Olympic gymnast or Cirque du Soleil performer – and it’s essential for PCB designers and manufacturers whose prototypes and end products demand precision etching on flex PCB materials. For the past 40 years, standard mechanical PCB milling systems have been the tools of choice for straightforward milling operations, and in some cases, they’ve been great performers for flex PCB etching as well. LPKF’s top-performing ProtoMat mechanical PCB milling systems, for example, feature faster spindle speeds, low runout and high resolution for working with substrates as thin as 5 mil for single-sided designs and traces, and spacing as small as 4 mil. All good stuff, so how could it get even better? Laser.

Read More

UV Laser Depaneling: Does Edge Charring Really Affect Conductivity?


“What’s that discoloration on the edges?”

That’s the question asked most often with an element of shock and surprise by people who are using UV laser depaneling machines for the first time to cut PCBs from FR4 and polyimide. The simple answer is that some edge charring occurs on thicker materials like FR4 and the “discoloration” is a carbon residue produced on each pass of the laser. In most cases, the edge charring is just a cosmetic issue that does not affect PCB quality. The biggest concern is that the carbon dust may be conductive and may somehow contaminate or short-circuit components populating the board.

Read More